
J
H
E
P
0
2
(
2
0
0
8
)
0
7
6

Published by Institute of Physics Publishing for SISSA

Received: October 31, 2007

Revised: February 5, 2008

Accepted: February 6, 2008

Published: February 20, 2008

Dominant next-to-leading order QCD corrections to

Higgs plus three jet production in vector-boson fusion

Terrance Figy

Institute of Particle Physics Phenomenology, Durham University,

South Road, Durham, DH1 3LE, U.K.

E-mail: terrance.figy@durham.ac.uk

Vera Hankele and Dieter Zeppenfeld

Institut für Theoretische Physik, Universität Karlsruhe,

P.O.Box 6980, 76128 Karlsruhe, Germany

E-mail:vera@particle.uni-karlsruhe.de, dieter@particle.uni-karlsruhe.de

Abstract: We present the calculation of the dominant next to leading order QCD correc-

tions to Higgs boson production in association with three jets via vector boson fusion in

the form of a NLO parton-level Monte Carlo program. QCD corrections to integrated cross

sections are modest, while the shapes of some kinematical distributions change appreciably

at NLO. Scale uncertainties are shown to be reduced at NLO for the total cross section
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1. Introduction

One of the primary goals of the CERN Large Hadron Collider (LHC) is the discovery of the

Higgs boson and a thorough investigation of the mechanism of electroweak (EW) symmetry

breaking [1, 2]. In this context, vector-boson fusion (VBF) has emerged as a particularly

interesting class of processes. Higgs boson production in VBF, i.e. the EW reaction qq →

qqH, where the Higgs decay products are detected in association with two tagging jets,

offers a promising discovery channel [3] and, once its existence has been verified, will help

to constrain the couplings of the Higgs boson to gauge bosons and fermions [4].

The observation of two forward tagging jets in Higgs production via VBF at the LHC

is crucial for the suppression of backgrounds [5 – 10]. In addition to forward jet tagging, the

veto of any additional jet activity in the central region (central jet veto) leads to further

suppression of QCD backgrounds such as W+W−jj , tt̄jj, and gluon fusion Hjj produc-

tion [8, 11]. This is due to the fact that the t-channel exchange of quarks or gluons tends to

radiate harder and more central gluons than in the VBF case. For VBF processes, jet activ-

ity in the central region is suppressed due to color singlet exchange in the t-channel. For the

central jet veto (CJV) proposal, events are discarded if any additional jet with a transverse

momentum above a minimal value, pT,veto, is found between the tagging jets [5, 12 – 17].

In order to utilize the CJV for the measurement of Higgs couplings, the reduction

factor, Psurv, caused by the CJV on the observable signal cross section must be precisely

known. The relevant information is contained in the fraction of VBF Higgs events with at

least one additional veto jet between the two tagging jets, i.e. we need to know the ratio of

the 3-jet Higgs cross section, σjjj, to the inclusive cross section for VBF Higgs production

with two tagging jets, σjj. The survival probability for the Higgs signal is then given by

Psurv = 1 − σjjj/σjj. Perturbative survival probabilities for the CJV have been calculated
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for the Higgs boson signal and background processes using LO matrix elements [8, 13].

The cross section for the VBF process pp→ Hjjj is proportional to αs at LO, which leads

to substantial theoretical uncertainties (scale variations of 30% or more). Even though the

effect on the survival probability is mitigated by the smallness of σjjj/σjj (about 0.1 to 0.2

for veto thresholds pT,veto ≈ 20 GeV), a more reliable prediction requires a calculation of

the NLO QCD corrections to the Hjjj cross section. We have performed this calculation

and report on the results in this paper. We do not consider additional reductions of the

survival probability due to underlying event and pile-up effects. An assessment of these

effects is best performed after first LHC data have become available.

A full NLO QCD calculation of the process pp → HjjjX involves virtual corrections

with hexagon diagrams and would be truly challenging. As we explain in section 2, all pen-

tagon and hexagon contributions are color suppressed by a factor 1/(N2 − 1) in an SU(N)

gauge theory, and they are further suppressed by the kinematics of the VBF process. For

a prediction of the survival probability of the Higgs signal at the few percent level, com-

mensurate with the knowledge of the VBF cross section for Hjj production at NLO and

expected experimental accuracies at the LHC, these contributions are completely negligi-

ble. We therefore perform the calculation by systematically neglecting the gauge invariant

subsets of diagrams which involve t-channel gluon exchange and which lead to pentagons

and hexagons. Similarly, we neglect identical fermion effects for four-quark final states.

In section 2 we more explicitly specify and justify these approximations and we briefly

describe the calculation of the LO and NLO matrix elements for Hjjj production.

Section 3 deals with phenomenological applications of the parton-level Monte Carlo

program which we have developed. We consider theHjjj cross section at NLO after typical

VBF cuts and discuss the reduction of the scale dependence of relevant distributions. We

show that the scale dependence of Psurv is reduced to about 1% by including the NLO

QCD corrections to the three jet cross section. Conclusions are given in section 4. Explicit

formulas for the virtual corrections and for finite collinear terms from initial state radiation

in gluon initiated processes are collected in two appendices.

2. The NLO calculation and approximations

The cross section for the leading order process pp → Hjjj, via VBF, has been previously

calculated as the NLO real emission correction to Hjj production in refs. [18 – 20]. The rel-

evant Feynman graphs are depicted in figure 1: one needs to consider the O(α3αs) subpro-

cesses qQ→ qQgH and crossed subprocesses with vector boson exchange in the t-channel.

We explicitly exclude s-channel weak boson exchange and thus set aside higgsstrahlung

processes, i.e. V Hj production with subsequent decay V → jj. In the following, hig-

gsstrahlung is viewed as a separate process and we also neglect any interference of VBF

and higgsstrahlung (in the case of identical fermion flavors) since these interference effects

are very small in the phase space region relevant for VBF observation at the LHC [21, 22].

In order to clarify our notation and the approximations in our calculation, let us

start by considering the form of the Born amplitude for the qQ → qQgH subprocess. By
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Figure 1: Lowest-order Feynman graphs for pp→ Hjjj via VBF.

M3(1q, 2Q, 3g, aq, bQ) we denote the matrix element for the parton level process

q(pa) +Q(pb) → q(p1) +Q(p2) + g(p3) +H(P ), (2.1)

shown in figure 1. Two distinct color structures contribute to this Born matrix element

with three final state colored partons,

M3(1q, 2Q, 3g, aq, bQ) = A3(1q, 3g, aq; 2Q, bQ)δi2ibt
a3

i1ia

+A3(2Q, 3g, bQ; 1q, aq)δi1iat
a3

i2ib
. (2.2)

Focusing on the gluon emission, each of the amplitudes A3 can be viewed as a Compton

scattering amplitude for the process Q(k1) → Q(k2)g(q1)V (q2), defined by

MB(k2, q1, q2; ǫ1, ǫ2) =−e gV Q2Q1
τ gsψ̄(k2)

{
γν (/k2 + /q2)

(k2 + q2)2
γµ (2.3)

+ γµ (/k2+/q1)

(k2+q1)2
γν

}
Pτψ(k1)ǫ1µ(q1)ǫ2ν(q2) .

Here, −e gV Q2Q1
τ is the left- or righthanded coupling of the quarks to the weak boson, gs

denotes the strong coupling constant, Pτ = 1
2(1 + τγ5) is the chirality projector, and ǫ1

and ǫ2 are the polarization vectors of the gluon and of the weak boson, respectively. The

role of the polarization vector for the weak boson is taken by a current, hµ, which, for the

first two diagrams in figure 1, is given by

hµ(pbτb, p2τ2) = δτ2τb
(−e)gHVVg

V f2fb
τ2 DV [p2

a13]DV [p2
b2]ψ̄(p2)γ

µPτ2ψ(pb) (2.4)

with pijk = pi − pj − pk and pij = pi − pj, while DV [q2] = 1/[q2 −M2
V ] is the weak boson

propagator, which, in our calculation, only occurs with space-like momentum. In terms of
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Figure 2: The dominant virtual QCD corrections. The “blobs” correspond to the sum of all virtual

corrections to the basic Q → QgV Compton amplitude and are given more explicitly in figure 6.

The first diagram and the second pair of diagrams in each line form gauge invariant subsets.

the Compton amplitude of eq. (2.3) the A3 are then given by

A3(1q, 3g, aq; 2Q, bQ) = MB(p1, p3, pa13; ǫ3, h(pbτb, p2τ2)),

A3(2Q, 3g, bQ; 1q, aq) = MB(p2, p3, pb23; ǫ3, h(paτa, p1τ1)). (2.5)

The gQ→ qq̄QH subprocess is obtained by crossing the initial state quark q(pa) with

the final state gluon in eq. (2.2) and dropping the s-channel graphs which result from

crossing the diagrams in the second line of figure 1. The 3-parton matrix elements M3

have been computed using the helicity amplitude method of ref. [23].

The real emission corrections to VBF Hjjj production consist of four subprocess

classes with four final state partons. These classes are (a) qQ → qQggH, (b) qQ →

qQq′q̄′H, (c) gQ → qq̄QgH, and (d) gg → qq̄QQ̄H. The generalization to the crossed

processes with q → q̄ and/or Q→ Q̄ is straightforward.

The above subprocesses lead to soft and collinear singularities when integrated over

the phase space of the final state partons. We use the Catani-Seymour dipole subtraction

method to regulate these divergences [24] and to cancel them against those originating

from the virtual corrections. The virtual corrections can be divided into two classes of

gauge covariant subsets. The first class (depicted in figure 2) are graphs in which the

internal gluon propagator is attached to a single fermion line and which involve up to

box corrections. The second class (depicted in figure 3) are graphs in which the internal

gluon propagates between different fermion lines, i.e. they contain a t-channel gluon. These

graphs only play a role for subprocesses with two initial state quarks or anti-quarks. For

gluon initiated processes they only contribute to the interference of VBF and higgsstrahlung

diagrams, which we neglect. The interference of the hexagon and pentagon amplitudes

– 4 –
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Figure 3: Pentagon and hexagon diagrams for the color structure δi1ia
ta3

i2ib
. An analogous set

appears with the external gluon attached to the lower quark line. Note that hexagon graphs with a

three-gluon-vertex correspond to a color structure which cannot interfere with the Born amplitude.

with the Born amplitude is color suppressed by a factor dG = N2 − 1 with respect to the

interference of box corrections with the Born amplitude. We neglect the contribution of

the hexagon and pentagon amplitudes. However, in doing so we must also consider the

color structure of the real corrections and drop contributions which cancel the infrared

singularities of the pentagons and hexagons.

As an example for these real emission processes, consider the matrix element for the

subprocess,

q(pa) +Q(pb) → q(p1) +Q(p2) + g(p3) + g(p4) +H(P ) (2.6)

depicted in figure 4 and denoted by M4(1q, 2Q, 3g, 4g, aq, bQ). M4 has the following color

decomposition in terms of color subamplitudes, A and B,

M4(1q, 2Q, 3g, 4g, aq, bQ) = (ta3ta4)i1iaδi2ibA(1q, 3g, 4g, aq; 2Q, bQ)

+(ta4ta3)i1iaδi2ibA(1q, 4g, 3g, aq; 2Q, bQ)

+(ta3ta4)i2ibδi1iaA(2Q, 3g, 4g, bQ; 1q, aq) (2.7)

+(ta4ta3)i2ibδi1iaA(2Q, 4g, 3g, bQ; 1q, aq)

+ta3

i1ia
ta4

i2ib
B(1q, 3g, aq; 2Q, 4g, bQ)

+ta4

i1ia
ta3

i2ib
B(1q, 4g, aq; 2Q, 3g, bQ).

The A terms correspond to both gluons attached to the same quark line, while B terms

describe emission of one gluon from each of the two quark lines. Abbreviating these am-

plitudes by

A1 = A(1q, 3g, 4g, aq; 2Q, bQ) , A2 = A(1q, 4g, 3g, aq; 2Q, bQ) ,

A3 = A(2Q, 3g, 4g, bQ; 1q, aq) , A4 = A(2Q, 4g, 3g, bQ; 1q, aq) , (2.8)

B1 = B(1q, 3g, aq; 2Q, 4g, bQ) , B2 = B(1q, 4g, aq; 2Q, 3g, bQ),

the color summed squared matrix element can be written as

|M4(1q, 2Q, 3g, 4g, aq, bQ)|2 = d2
FC

2
F

{
|A1|

2+|A2|
2+|A3|

2+|A4|
2+|B1|

2+|B2|
2 (2.9)

+2xRe [A1A
∗
2+A3A

∗
4]+ 2y Re [(A1+A2)·(A3+A4)

∗+B1B
∗
2]}
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with x = 1−CA/2CF = −1/(N2 −1) and y = 1/dG = 1/(N2 −1), where the explicit value

is given for an SU(N) gauge group, with dG = N2 − 1 and dF = N . The term in eq. (2.9)

which is proportional to y leads to a soft divergence when integrated over the phase space

of the soft/collinear parton, which is in fact canceled by the corresponding soft divergent

hexagon and pentagon graphs. Since we neglect the latter, for consistency, we also need

to set y = 0 in eq. (2.9). The association of the y-terms with the hexagon and pentagon

diagrams of figure 3 is made clear when recognizing that these are all the contributions

where the same gluon is attached to both an upper and a lower quark line. The y-term and

the interference of hexagons and pentagons with the Born amplitude are not only color

suppressed by a factor 1/(N2 − 1), they are further suppressed because the interfering

amplitudes are never large simultaneously when typical VBF cuts are applied. Consider,

for example, the B1 and B2 amplitudes in figure 4. B1 is large when q1 and g3 are forward

(i.e. in the initial qa direction) and q2 and g4 are backward, in the qb hemisphere. For B2

to be large, q1 and g4 must be forward while q2 and g3 are backwards. These conditions

cannot be satisfied simultaneously for a large rapidity separation between the highest pT

jets, which typically will be the two quark jets. The largest interference between B1 and

B2 and, similarly, between A1 + A2 and A3 + A4 is to be expected when both factors in

the interference terms have similar size, i.e. when both gluons are emitted in the central

region. For central gluons, however, all contributing amplitudes are suppressed due to the

gluon radiation pattern of the underlying t-channel weak boson exchange.

We have estimated the error on the total Hjjj cross section, ∆σNLO, which we make in

neglecting the hexagon and pentagon topologies (shown in figure 3) and the corresponding

interference terms (y-terms) in eq. (2.9). Consider the dominant phase space region where

one gluon (say g3) is hard and the second one (g4) is soft. The soft emission can be

factorized as an eikonal factor, while the hard part of B1 and A1 + A2 will be given by

the upper line of the Born diagram of figure 1, i.e. by A3(1q, 3g, aq; 2Q, bQ). Analogously,

the hard factor in B2 and A3 +A4 is A3(2Q, 3g, bQ; 1q, aq), corresponding to hard emission

from the lower quark line in figure 1. Approximately, in the soft region, the y-terms plus

the corresponding virtual corrections, given by the interference of hexagons and pentagons

with the Born amplitude, are proportional to the product

αs

2π

d2
FC

2
F

(N2 − 1)
2 Re [A3(1q, 3g, aq; 2Q, bQ)A3(2Q, 3g, bQ; 1q, aq)

∗] , (2.10)

integrated over the 3-parton phase space. In figure 5, we compare the absolute value of this

proxy for the full interference terms (dotted blue curves) with the tree level cross section

(dashed red curve). Shown is the distribution in rapidity for the veto jet (lowest pT parton)

measured with respect to the center of the rapidity of the two tagging jets. In the right

panel of figure 5, the ratio of the two distributions is shown. As a second estimator for

the neglected terms, we have calculated the full y-terms for the 4-parton final state and

soft approximations for the hexagons and pentagons, by keeping the infrared divergent

C-function terms only, according to the prescription of ref. [25]. For both contributions

the full Catani-Seymour subtraction has been implemented, with dipole terms as listed for

– 6 –
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Figure 4: Feynman graphs for the real emission amplitude M4(1q, 2Q, 3g, 4g, aq, bQ) as described

in eq. (2.7)

y = 1/dG in table 1. The resulting curve for

R(yrel) =
d∆σNLO(µR, µF )/dyrel

dσLO(µR, µF )/dyrel
, (2.11)

is shown for µR = µF = 40 GeV. The ratio, R, reaches a maximal value of ≈ 10−4

in the central region between the two tagging jets, in agreement with the result for the

proxy discussed above. We conclude that the y-terms and the corresponding hexagon and

pentagon contributions give a relative contribution below one permille everywhere in phase

space and can safely be neglected. We note that these interference terms are at the same

level as the interference between gluon fusion and vector boson fusion for pp → Hjjj.

In a complete calculation, not only would the hexagon and pentagon graphs need to be

calculated, gluon fusion contributions would have to be included as well.

In addition to the y-terms discussed above we also neglect any interference terms for

identical fermions in our simulations. These terms are color suppressed by a factor 1/N and
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Figure 5: The distribution in rapidity of the veto jet measured with respect to the center of rapidity

of the tagging jets. In the left panel, dσ/dyrel is shown at LO (dashed red), for the proxy given by

eq. (2.10) (dotted blue), and for the NLO color suppressed contribution in the soft approximation

(solid green). The right panel depicts the ratio, R, for both the proxy (dotted blue) and the NLO

color suppressed contribution (solid green).

real subprocess dipole factors

(1q, 2Q, 3g, 4g, aq, bQ) D14,3,D13,4,D34,1,D
a
14,D

a
13

y = 0 in eq. (2.9) Da
34,D

a4
1 ,Da3

1 ,Da4
3 ,Da3

4

D24,3,D23,4,D34,2,D
b
24,D

b
23

Db
34,D

b4
2 ,D

b3
2 ,D

b4
3 ,D

b3
4

y = 1/dG in eq. (2.9) Da3,b,Db3,a,Da4,b,Db4,a,Da
24

Db
14,D

a4
2 ,Db4

1 ,D24,1,D14,2

Da
23,D

b
13,D

a3
2 ,Db3

1 ,D23,1,D13,2

(1q, 2Q, 3q′ , 4q̄′ , aq, bQ) D34,1,D31,2,D
a
34,D

b
34

Da1
3 ,Da1

4 ,Db2
3 ,D

b2
4

(1q, 2Q, 3q̄, 4g, ag, bQ) Da3
1 ,Da1

3 ,Da3
4 ,Da1

4

Da4
1 ,Da4

3 ,Db4
2 ,D

b
24

Da
14,D

a
34,D14,3,D34,1

(1q, 2Q, 3q̄, 4Q̄, ag, bg) Db4
2 ,D

b2
4 ,D

a3
1 ,Da1

3

Table 1: Dipole factors for the real emission corrections to Hjjj production. The y = 1/dG line

gives the additional dipole factors which are needed for the qQ→ qQggH process when the y terms

in eq. (2.9) are not neglected.

can only contribute when fermion helicities are the same. For charged current contributions

we have determined the size of these interference terms for 4-quark final states and have

compared them to the charged current contribution to the LO 3-jet cross section. We find a

relative contribution of 7.5 ·10−4 within the cuts of section 3: also these “Pauli interference

terms” are truly negligible. With these approximations, the fortran code for the real

emission matrix element squared was generated with the help of MadGraph [26].

The 4-parton phase space integral of the squared real matrix elements suffers from
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soft and collinear divergences. The dipole subtraction method of Catani and Seymour

provides a means to regulate these divergences [24]. In the Catani-Seymour formalism the

NLO corrections consist of three pieces: (a) the contribution of the dipole subtracted real

corrections, σNLO
4 , (b) the contribution of the finite virtual corrections, σNLO

3 , and (c) a

piece resulting from the factorization of collinear singularities into the parton distribution

functions, σNLO
3,col . As an example, consider the process, qQ→ qQggH, in the y = 0 case in

eq. (2.9). The subtracted cross section for this process takes the form,

σNLO
4 (qQ→ qQggH) =

∫ 1

0
dxa

∫ 1

0
dxbfq/p(xa, µF )fQ/p(xb, µF )

1

2ŝ
dΦ5(pa, pb) (2.12)

·
{
|M4(1q, 2Q, 3g, 4g, aq, bQ)|2F

(4)
J (p1, p2, p3, p4; pa + pb)

−
∑

pairs

i,j

∑

k 6=i,j

Dij,k(p1, p2, p3, p4; pa, pb)F
(3)
J (p1, . . . p̃ij, p̃k, . . . p4; pa, pb)

−
∑

pairs

i,j

[
Da

ij(p1, p2, p3, p4, ; pa, pb)F
(3)
J (p1, . . . p̃ij, . . . , p4; p̃a, pb)

+(a↔ b)
]

−
∑

i

∑

k 6=i

[
Dai

k (p1, p2, p3, p3; pa, pb)F
(3)
J (p1, . . . p̃k, . . . , p4; p̃ai, pb)

+(a↔ b)
]}

,

where the Dij,k etc. are the dipole factors as defined in ref. [24], dΦ5 is the 5-particle phase

space measure and ŝ = (pa + pb)
2 denotes the center-of-mass energy. A complete list of the

dipole factors in eq. (2.12) is shown in table 1. Notice, that we do not need to consider

dipole factors for which there is an initial state singularity with an initial state spectator

for the case of y = 0 because in this approximation radiative corrections to the upper and

the lower lines in figure 1 effectively decouple. We also show in table 1 dipole factors for

quark-gluon and gluon-gluon initiated processes. The functions F
(3)
J and F

(4)
J define the jet

algorithm for 4-parton and 3-parton final states and must be infrared safe which formally

means that F
(4)
J → F

(3)
J in any case where the 4-parton and 3-parton configurations are

kinematically degenerate.

The dipole factors are integrated in d = 4 − 2ǫ space-time dimension over the phase

space of the soft/collinear parton. Integrating the dipole factors for the processes, qQ →

qQggH and qQ → qQq′q̄′H, lead to the universal singular factor, 〈I(ǫ)〉. For the parton

level process

q(pa) +Q(pb) → q(p1) +Q(p2) + g(p3) +H(P ) , (2.13)

we can split 〈I(ǫ)〉 into two pieces according to,

〈I(ǫ)〉 = CF (I1(ǫ) + I2(ǫ)) . (2.14)

– 9 –
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I1(ǫ) is a piece proportional to the Born-level color subamplitude squared,

|A3(1q, 3g, aq; 2Q, bQ)|2, and is

I1(ǫ) = |A3(1q, 3g, aq; 2Q, bQ)|2
αs(µ

2
R)

2π

1

Γ(1 − ǫ)
(2.15)

·

{
1

2

((
4πµ2

R

s13

)ǫ

+

(
4πµ2

R

sa3

)ǫ)(
CA

ǫ2
+
γg

ǫ
+ γg +Kg

)

+
1

2

CA

CF

((
4πµ2

R

s13

)ǫ

+

(
4πµ2

R

sa3

)ǫ

− 2

(
4πµ2

R

sa1

)ǫ)(
CF

ǫ2
+
γq

ǫ
+ γq +Kq

)

+2

((
4πµ2

R

sa1

)ǫ

+

(
4πµ2

R

sb2

)ǫ)(
CF

ǫ2
+
γq

ǫ
+ γq +Kq

)}

with

γq =
3

2
CF , γg =

11

6
CA −

2

3
TRNf , (2.16)

and,

Kq =

(
7

2
−
π2

6

)
CF , Kg =

(
67

18
−
π2

6

)
CA −

10

9
TRNf . (2.17)

Here sij = 2pi · pj with i = 1, 2, 3, a or b. TR = 1/2, CA = N , and CF = (N2 − 1)/(2N)

in SU(N) gauge theory. The number of flavors is Nf = 5. I2(ǫ) is obtained from I1(ǫ)

by interchanging the quark labels, a↔ b and 1 ↔ 2. The 1/ǫ2 and 1/ǫ divergences cancel

against the virtual corrections shown in figure 2.

In our approximation there are two distinct color structures that contribute to this

virtual matrix element, Mvirt
3 (1q, 2Q, 3g, aq, bQ), with three final state colored partons,

Mvirt
3 (1q, 2Q, 3g, aq, bQ) = Avirt

3 (1q, 3g, aq; 2Q, bQ)δi2ibt
a3

i1ia
(2.18)

+Avirt
3 (2Q, 3g, bQ; 1q, aq)δi1iat

a3

i2ib
.

The interference between the virtual and Born three parton amplitudes takes on the fol-

lowing form upon summing over final state colors and averaging over initial state colors,

∑

colors

2 Re[Mvirt
3 M∗

3] = CF

(
2 Re[Avirt

3 (1q, 3g, aq; 2Q, bQ)A∗
3(1q, 3g, aq; 2Q, bQ)] (2.19)

+ 2 Re[Avirt
3 (2Q, 3g, bQ; 1q, aq)A

∗
3(2Q, 3g, bQ; 1q, aq)]

)
.

We split the virtual corrections shown in figure 2 into two classes: the virtual corrections

along a quark line with only one weak boson attached and the virtual corrections along a

quark line with a gluon and a weak boson attached. The former, with only a weak boson

vertex, are factorizable in terms of the tree-level current hµ defined by eq. (2.4). For vertex

corrections to the lower line one has

hµ
virt(pbτb, p2τ2) = hµ(pbτb, p2τ2)CF

αs(µR)

4π

(
4πµ2

R

sb2

)ǫ
1

Γ(1 − ǫ)

(
−

2

ǫ2
−

3

ǫ
− 8

)
, (2.20)

and similarly for vertex corrections to the upper line. Here µR is the renormalization scale,

and sb2 = 2pb · p2 is the weak boson virtuality for massless quarks.
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Figure 6: The one-loop QCD corrections for q → qgV .

The second class of diagrams, corresponding to the “blob” in figure 2 and shown

explicitly in figure 6, are the virtual QCD corrections to the Feynman graphs where a

gluon g and an electroweak boson V ( outgoing momenta q1 and q2) are attached to the

same fermion line. The kinematics is given by

Q(k1) → Q(k2) + g(q1) + V (q2), (2.21)

where k2
1 = k2

2 = q21 = 0 and momentum conservation reads k1 = k2 + q2 + q1. As in

ref. [27], it is convenient to use the Mandelstam variables for a 2 → 2 process which is
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taken to be q̄q → gV . The Mandelstam variables are thus defined as

s = (k1 − k2)
2 = (q1 + q2)

2,

t = (k1 − q1)
2 = (k2 + q2)

2, (2.22)

u = (k1 − q2)
2 = (k2 + q1)

2.

The gluon polarization denoted by ǫ1(q1) is transverse, i.e. ǫ1 · q1 = 0 and this permits

simplifications in the virtual amplitudes. The electroweak boson V is always virtual in the

calculation. Its effective polarization vector ǫµ2 (q2) corresponds to the tree level fermion cur-

rent hµ. Due to the emission of the Higgs boson off the t-channel vector boson propagator,

this fermion current is not conserved. Hence, terms with ǫ2 ·q2 must be kept. However, elec-

troweak gauge invariance of the amplitude is preserved, i.e., Mµq
µ
2 = 0. We have computed

the virtual amplitude in the conventional dimensional regularization scheme (CDR) and

used Passarino-Veltman reduction in d = 4−2ǫ spacetime dimensions to reduce tensor loop

integrals into scalar loop integrals [28]. The virtual amplitude MV = MV (k2, q1, q2; ǫ1, ǫ2)

for Q(k1) → Q(k2)g(q1)V (q2) is

MV = MB
αs(µ

2
R)

4π

1

Γ(1 − ǫ)

{
1

2

((
4πµ2

R

−u

)ǫ

+

(
4πµ2

R

−t

)ǫ)(
−
CA

ǫ2
−
γg

ǫ

)
(2.23)

+
1

2

CA

CF

((
4πµ2

R

−u

)ǫ

+

(
4πµ2

R

−t

)ǫ

− 2

(
4πµ2

R

−s

)ǫ)(
−
CF

ǫ2
−
γq

ǫ

)

+2

(
4πµ2

R

−s

)ǫ (
−
CF

ǫ2
−
γq

ǫ

)
+ F (−s,−t,−u) −

π2

6
CA − 8CF

}

+M̃V ,

where

F (−s,−t,−u) =
CA

2

(
ln2

(
−u

µ2
R

)
+ ln2

(
−t

µ2
R

))
−

1

2
(CA − 2CF ) ln2

(
−s

µ2
R

)
(2.24)

+
3

2
(CA−2CF ) ln

(
−s

µ2
R

)
+

(
1

3
TRNf −

5

3
CA

)(
ln

(
−u

µ2
R

)
+ln

(
−t

µ2
R

))
.

The finite part M̃V = M̃V (k2, q1, q2; ǫ1, ǫ2) is given by

M̃V =
αs(µ

2
R)

4π
(−e)gV Q2Q1

τ gs (2.25)

·

{(
CF −

1

2
CA

)
{M̃(1)

τ (k2, q1, q2; ǫ1, ǫ2) + M̃(2)
τ (k2, q1, q2; ǫ1, ǫ2)}

−
1

2
CAM̃

(3)
τ (k2, q1, q2; ǫ1, ǫ2)

}
.

Results for physical kinematic regions can be obtained through the analytic continuation

of eq. (2.23) by the replacement of the time-like invariant by s → s + i0+, t → t + i0+,

or u → u + i0+. The iπ factors which result from the analytic continuation vanish upon

interfering the virtual amplitude with the Born amplitude. The analytic continuation for

– 12 –



J
H
E
P
0
2
(
2
0
0
8
)
0
7
6

any double logarithms is dealt with automatically by the fortran code for the finite part

of the virtual amplitude M̃V given by eq. (2.25).

The M̃
(i)
τ for i = 1, 2, 3 are finite and can be expressed in terms of the finite parts of

the Passarino-Veltman, B0, C0, and Dij functions, which we denote as B̃0, C̃0, and D̃ij .

Analytic expressions for the M̃
(i)
τ are given in appendix A.

We can build the virtual color subamplitudes of eq. (2.18) out of the two classes of

virtual corrections discussed above. The virtual color subamplitudes are then

Avirt
3 (1q, 3g, aq; 2Q, bQ) = MB(p1, p3, pa13; ǫ3, hvirt(pbτb, p2τ2))

+MV (p1, p3, pa13; ǫ3, h(pbτb, p2τ2)) , (2.26)

Avirt
3 (2Q, 3g, bQ; 1q, aq) = MB(p2, p3, pb23; ǫ3, hvirt(paτa, p1τ1))

+MV (p2, p3, pb23; ǫ3, h(paτa, p1τ1)). (2.27)

For the following we adopt the following abbreviations,

A3,1a = A3(1q, 3g, aq; 2Q, bQ), A3,2b = A3(2Q, 3g, bQ; 1q, aq) (2.28)

Avirt
3,1a = Avirt

3 (1q, 3g, aq; 2Q, bQ), Avirt
3,2b = Avirt

3 (2Q, 3g, bQ; 1q, aq).

The color decomposed interference of the Born and virtual subamplitudes is then,

∑

colors

2 Re[Avirt
3,1aA

∗
3,1a] = |A3,1a|

2αs(µ
2
R)

2π

1

Γ(1 − ǫ)

·

{
1

2

((
4πµ2

R

s13

)ǫ

+

(
4πµ2

R

sa3

)ǫ)(
−
CA

ǫ2
−
γg

ǫ

)

+
1

2

CA

CF

((
4πµ2

R

s23

)ǫ

+

(
4πµ2

R

sa3

)ǫ

−2

(
4πµ2

R

sa1

)ǫ)(
−
CF

ǫ2
−
γq

ǫ

)

+2

((
4πµ2

R

sa1

)ǫ

+

(
4πµ2

R

sb2

)ǫ)(
−
CF

ǫ2
−
γq

ǫ

)

−
π2

6
CA − 16CF + F (sa1, sa3, s13)

}

+2 Re[Ãvirt
3 (1q, 3g, aq; 2Q, bQ)A∗

3,1a] , (2.29)

with Ãvirt
3 (1q, 3g, aq; 2Q, bQ) = M̃V (p1, p3, pa13; ǫ3, h(pbτb, p2τ2)). A similar expression for

2 Re[Avirt
3,2bA

∗
3,2b] is obtained by making the replacements, a↔ b and 1 ↔ 2, in eq. (2.29).

Summing together the contributions from eq. (2.15) and eq. (2.29) yields the finite
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3-parton NLO cross section

σNLO
3 (qQ→ qQgH) =

∫ 1

0
dxa

∫ 1

0
dxbfq/p(xa, µF )fQ/p(xb, µF )

×
1

2ŝ
dΦ4(pa, pb)F

(3)
J (p1, p2, p3, P ; pa, pb) (2.30)

·

{
|MB(1q, 2Q, 3g, aq, bQ)|2

(
1 +

αs(µ
2
R)

2π
Kborn

)

+|A3(1q, 3g, aq; 2Q, bQ)|2
αs(µ

2
R)CF

2π
F (sa1, sa3, s13)

+|A3(2Q, 3g, bQ; 1q, aq)|
2αs(µ

2
R)CF

2π
F (sb2, sb3, s23)

+CF

(
2 Re[Ãvirt

3 (1q, 3g, aq; 2Q, bQ)A∗
3(1q, 3g, aq; 2Q, bQ)]

+ 2 Re[Ãvirt
3 (2Q, 3g, bQ; 1q, aq)A

∗
3(2Q, 3g, bQ; 1q, aq)]

) }
,

with

Kborn =

(
−

2π2

3
+

50

9

)
CA −

16

9
TRNf + 2CF

(
2 − π2

)
. (2.31)

The remaining divergent piece of the integral of the dipole factors in eq. (2.12) is

proportional to the P qq and P gq splitting functions and is factorized into the parton dis-

tribution functions. The surviving finite collinear terms are given by

σNLO
3,col (qQ→ qQgH) =

∫ 1

0
dxa

∫ 1

0
dxb

1

2ŝ
dΦ4(pa, pb)F

(3)
J (p1, p2, p3; pa, pb)

·{(fq/p(xa, µF )f2,b
Q/p(xb, µF , µR) + f1,a

q/p(xa;µF , µR)fQ/p(xb;µF ))

·|M3(1q, 2Q, 3g; aq, bQ)|2

+
1

2
CAfq/p(xa;µF )(f3,b

Q/p(xb;µF , µR) − f2,b
Q/p(xb;µF , µR))

·|A3(2Q, 3g, bQ; 1q, aq)|
2

+
1

2
CA(f3,b

q/p(xa;µF , µR) − f1,a
q/p(xa;µF , µR))fQ/p(xb, µF ) (2.32)

·|A3(1q, 3g, aq; 2Q, bQ)|2},

and similarly for the anti-quark initiated processes. Here the quark functions

f i,j
q/p(x;µF , µR) are given by

f i,j
q/p(x;µF , µR) =

αs(µR)

2π

∫ 1

x

dz

z

{
fg/p

(x
z
;µF

)
Ai,j

gq (z)

+
[
fq/p

(x
z
;µF

)
− zfq/p(x;µF )

]
Bi,j

qq (z) (2.33)

+ fq/p

(x
z
;µF

)
Ci,j

qq (z)
}

+
αs(µR)

2π
fq/p(x;µF )Di,j

qq (x) ,

with kernels

Ai,j
gq (z) = TR[z2 + (1 − z)2] ln

2pjpi(1 − z)

µ2
F z

+ TR2z(1 − z) . (2.34)
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αNLO
s (MZ) αLO

s (MZ) MZ MW GF mh

0.118 0.130 91.188 GeV 80.416 GeV 1.16639 × 10−5/GeV2 120 GeV

Table 2: Standard Model input parameters

Bi,j
qq (z) = CF

[
2

1 − z
ln

2pjpi(1 − z)

µ2
F

−
γi

Ci

1

1 − z

]
, (2.35)

Ci,j
qq (z) = CF

[
−(1 + z) ln

2pjpi(1 − z)

µ2
F z

−
2

1 − z
ln z + (1 − z)

]
, (2.36)

Di,j
qq (x) = CF

[
2π2

3
− 5 −

γi

Ci
−
γi

Ci
ln(1 − x) + ln2(1 − x) (2.37)

+
3

2
ln

2pipj

µ2
F

+ 2 ln(1 − x) ln
2pipj

µ2
F

]
.

where if parton i is a gluon, Ci = CA and if parton i is a quark or anti-quark, Ci = CF .

Likewise, γi = γq if parton i is a quark or anti-quark and γi = γg if parton i is a gluon.

The analogous results for gluon initiated processes are given in appendix B.

We have implemented the QCD corrections for pp→ Hjjj into a fully flexible parton-

level Monte Carlo program. We have checked the dipole subtraction by verifying that

the dipole subtraction terms and the real emission matrix elements match in the various

singular regions. The gauge invariance of the virtual matrix elements has been checked

numerically for random choices of momenta. The finite collinear counter-terms that re-

main after the factorization of initial-state collinear divergences have been obtained by two

independent calculations. We have also introduced a cut, α ∈ (0, 1], on the phase space of

the dipoles as described in ref. [29]. We have checked that the integrated cross section is

independent of this parameter and have used α = 0.3 in our simulations.

In all subsequent calculations we use the input parameters for defining Standard Model

(SM) couplings as listed in table 2. Other SM couplings are computed using LO electroweak

relations. Cross sections are computed using CTEQ6M parton distributions [30] for all

NLO results and CTEQ6L1 parton distributions for all leading order cross sections. The

running of the strong coupling is evaluated at two-loop order, with αs(MZ) = 0.118, for all

NLO results. For LO results, the running of the strong coupling is evaluated at one-loop

with αs(MZ) = 0.130. In order to reconstruct jets from the final-state partons, the kT

algorithm [31] as described in ref. [32] is used, with resolution parameter D = 0.8.

3. Predictions for the LHC

The goal of our calculation is a precise prediction of the LHC cross section for Higgs boson

production in VBF with three or more jets. The kT algorithm is used to define jets and

these jets are required to have

pTj ≥ 20 GeV , |yj | ≤ 4.5 . (3.1)

Here yj denotes the rapidity of the (massive) jet momentum which is reconstructed as the

four-vector sum of massless partons of pseudorapidity |η| < 5.
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At LO, there are exactly three massless final state partons. At NLO these jets may

be composed of two partons (recombination effect) or four well-separated partons may be

encountered, of which at least three satisfy the cuts of eq. (3.1) and would give rise to either

three or four-jet events. As with LHC data, a choice needs to be made for selecting the

tagging jets in such a multijet situation. Here the “pT -method” is chosen. For a given event,

the tagging jets are defined as the two jets with the highest transverse momentum with

ptag
Tj ≥ 30 GeV, |ytag

j | ≤ 4.5. (3.2)

The non-tagging jets by default are jets of lowest transverse momenta. They do not need

to satisfy the cuts of eq. (3.2) but must satisfy the cuts of eq. (3.1).

The Higgs boson decay products (generically called “leptons” in the following) are

required to fall between the two tagging jets in rapidity and they should be well observable.

While the exact criteria for the Higgs decay products will depend on the channel considered,

such specific requirements here are substituted by generating isotropic Higgs boson decay

into two massless “leptons” (which represent τ+τ− or γγ final states) and requiring

pTℓ ≥ 20 GeV , |ηℓ| ≤ 2.5 , △Rjℓ ≥ 0.6 , (3.3)

where △Rjℓ denotes the jet-lepton separation in the rapidity-azimuthal angle plane. In

addition, the two “leptons” are required to fall between the two tagging jets in rapidity:

ytag
j,min + 0.6 < ηℓ1,2

< ytag
j,max − 0.6. (3.4)

Note that no reduction due to branching ratios for specific final states has been included

in the calculation.

Backgrounds to vector-boson fusion are significantly suppressed by requiring a large

rapidity separation for the two tagging jets. Tagging jets are required to reside in opposite

detector hemispheres with

ytag 1
j · ytag 2

j < 0 (3.5)

and to have a large rapidity separation of

∆yjj =
∣∣∣ytag 1

j − ytag 2
j

∣∣∣ > 4 , (3.6)

sometimes called “rapidity gap cut”. QCD backgrounds for the Higgs signal typically occur

at small invariant masses, due to a the dominance of gluons at small Feynman x in the

incoming protons [8]. The QCD backgrounds can be reduced by imposing a lower bound

on the invariant mass of the tagging jets of

mjj =

√(
ptag 1

j + ptag 2
j

)2
> 600 GeV. (3.7)

The cross section for Higgs production via VBF in association with three jets or more

(Hjjj), within the cuts of eqs. (3.1)–(3.7), is shown in figure 7. The scale dependence of

the NLO and LO cross sections is shown for factorization and renormalization scales, µF

and µR, which are tied to a fixed reference scale µ0 = 40 GeV,

µR = ξRµ0, µF = ξFµ0. (3.8)
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Figure 7: Scale dependence of the total cross section at LO and NLO within the cuts of eqs. (3.1)–

(3.7) for VBF Hjjj production at the LHC. The factorization scale µF and the renormalization

scale µR are taken as multiples, ξµ0, of the fixed reference scale µ0 = 40 GeV. The NLO curves

are for µR = µF = ξµ0 (solid red line), µF = µ0 and µR = ξµ0 (dashed green line), and µF = ξµ0

and µR = ξµ0 (dot-dashed blue line ). The dotted black curve shows the scale dependence of the

LO cross section for µR = µF = ξµ0.

The value µ0 = 40 GeV was chosen to minimize the scale dependence of the NLO

predictions and at the same time it provides optimal agreement of the LO approximation

with the NLO result.

The LO cross section depends on both the factorization and renormalization scale. For

µR = µF = ξµ0 with 0.5 < ξ < 2 the scale variation is +26% to −19% for the LO cross

section. The large scale variation is primarily due the fact that the LO Hjjj production

cross section is proportional to αs. This is in contrast to Hjj production in VBF, which

only depends on the factorization scale at LO. At NLO three choices are shown: (a)

ξR = ξF = ξ (solid red line); (b) ξR = ξ, ξF = 1 (dashed green line); (c) ξR = 1, ξF = ξ

(dot-dashed blue line). Allowing for a factor 2 variation in either direction, i.e., considering

the range 0.5 ≤ ξ ≤ 2, the NLO cross section changes by less than 5% in all cases.

Our Monte Carlo program allows the analysis of arbitrary infrared and collinear safe

distributions with NLO QCD accuracy. In order to assess the impact of the NLO corrections

we compare LO and NLO results by plotting the dynamical K factor

K(x) =
dσNLO

3 (µR = µF = µ0)/dx

dσLO
3 (µR = µF = µ0)/dx

(3.9)

for our fixed reference scale of µ0 = 40 GeV. The stability of the results is represented via

the scale dependence, given by the ratio of cross sections and dubbed “relative change” in
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Figure 8: Rapidity separation in Hjjj production within the cuts of eqs. (3.1)–(3.5) and eq. (3.7).

In the left panel, dσ/d∆yjj is shown at LO (dashed green) and NLO (solid red) for µF = µR =

µ0 = 40 GeV. The right-hand panel depicts the K factor (solid green) and scale variations of LO

(dotted) and NLO (dashed) results for µR = µF = ξµ0 with ξ = 1/2 and 2.

Figure 9: Transverse momentum distribution for the softer tagging jet in Hjjj production within

the cuts of eqs. (3.1)–(3.7). The meaning of the curves is the same as in figure 8.

the following,

relative change =
dσ3(µR = µF = ξµ0)/dx

dσ3(µR = µF = µ0)/dx
. (3.10)

We plot results for ξ = 1/2 and 2 with µ0 = 40 GeV for NLO and LO distributions.

The wide separation in rapidity of the tagging jets is a characteristic feature of VBF

processes. In the left-hand panel of figure 8 the distribution dσ/d∆yjj is shown at LO

(dashed green) and at NLO (solid red) for Hjjj production. Just as in the NLO Hjj

case [19], the NLO corrections push the peak towards higher values of rapidity separation

∆yjj. This strengthens the case for the rapidity gap cut of ∆yjj > 4. The K factor
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Figure 10: Invariant mass distribution of the two tagging jets in Hjjj production within the cuts

of eqs. (3.1)–(3.5) and eq. (3.6). The meaning of the curves is the same as in figure 8.

(solid green) in the right-hand-side of figure 8 is strongly phase space dependent. The scale

variations ξ = 2±1 are significantly reduced by the NLO corrections, from ≈ 25% at LO to

≈ 10% or less at NLO in the relevant region 4 < ∆yjj < 7. Similar results are found for

the transverse momentum distribution of the tagging jets as shown in figure 9.

In figure 10 the invariant mass distribution of the two tagging jets is shown for a fixed

value of renormalization and factorization scale, µR = µF = 40 GeV. The K factor (solid

green) deviates from unity by 10% or less for this distribution and this scale choice, i.e. the

LO result provides for an excellent estimate. The ξ = 2±1 scale variations produce changes

in the LO distribution of about 30%, however (dotted lines). This uncertainty is reduced

to the 5% level at NLO (dashed curves).

When contemplating a central jet veto for the VBF signal, the probability for observing

three (or more) jets in the final state becomes crucial. With the two leading jets defined

as tagging jets, one would like to know this probability for emitting additional jets as a

function of tagging jet distributions. It is given by the 3-jet ratio R = σ3/σ2, which we

define for arbitrary distributions as

R{LO,NLO}(x) =
dσ

{LO,NLO}
3 (µR, µF )/dx

dσNLO
2 (µR = µF = mh)/dx

. (3.11)

For both NLO and LO 3-jet ratios, the distribution for Higgs plus two jet production in

the denominator is computed to NLO accuracy since this provides the most accurate cross

section estimate. For these Hjj distributions, the NLO parton-level Monte Carlo program

described in [19] is used with renormalization scale and factorization scale set to the mass

of the Higgs boson, mh. The numerator corresponds to the analogous distribution for Higgs

plus three jet inclusive events (VBF Hjjj production) for which we explore LO and NLO

predictions and different scale choices.

Let us start by considering the scale variations of the 3-jet ratio as a function of the ra-

pidity separation of the tagging jets, x = ∆yjj, (in figure 11) and of the invariant mass, x =
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Figure 11: The rapidity separation of two tagging jets for mh = 120 GeV within the cuts of

eqs. (3.1)–(3.5) and eq. (3.7). In the left panel, dσ/d∆yjj is shown at NLO (solid histograms) and

LO (dashed histograms) for Hjj and Hjjj production with a fixed scale µR = µF = 40 GeV. In

the right panel, 3-jet ratios, R(∆yjj) are shown at LO (dashed) and at NLO (solid) for µR = µF =

20, 40, and 80 GeV.

Figure 12: The dijet invariant mass of two tagging jets for mh = 120 GeV within the cuts of

eqs. (3.1)–(3.6). The meaning of the curves is the same as in figure 11.

mjj, of the two tagging jets (in figure 12). The left-hand panels show the distributions for

2-jet inclusive and 3-jet inclusive events as predicted at LO (dashed histograms) and NLO

(solid histograms) for a fixed scale µR = µF = 40 GeV. The right-hand panels then give

the corresponding 3-jet ratios for three choices of scales, µR = µF = 20, 40, and 80 GeV.

The 3-jet ratio decreases with increasing rapidity separation of the tagging jets. This is

largely a kinematic effect: additional radiation in VBF events is mostly emitted outside the

rapidity range set by the two tagging jets. Thus, the available phase space for additional

jets diminishes rapidly as ∆yjj increases. While typical 3-jet ratios are around 0.2, the

– 20 –



J
H
E
P
0
2
(
2
0
0
8
)
0
7
6

LO ratio RLO(∆yjj) (dashed curves) reaches values up to 0.7 at low values of ∆yjj. The

corresponding NLO ratio is significantly lower, around 0.4. The reason is that at NLO the

separation of the tagging jets increases somewhat. When normalizing to the NLO Hjj

cross section RLO is enhanced in the ∆yjj = 3 region, where cross sections are very small

due to the mjj > 600 GeV cut. There is no such effect for RNLO. One also notices that

for higher values of ∆yjj the scale dependence decreases, becoming insignificant at NLO

in the phase space region with typical VBF cuts (∆yjj > 4).

Similar threshold effects appear in the mjj distributions of figure 12: large scale vari-

ations at NLO are confined to the low mjj region with negligible cross section due to the

cuts. The 3-jet ratios decrease somewhat at large values of the dijet invariant mass. How-

ever, the effect is not as strong as in the ∆yjj distribution. Particularly striking is the

reduction of the scale uncertainty when going from RLO (≈ 30%) to RNLO (5 to 10%).

Veto jets are typically defined to be non-tagging jets that reside in the rapidity region

between the tagging jets. In addition to the cuts of eqs. (3.1)–(3.7), we employ the following

definition for the veto jets,

pveto
Tj > pT,veto , yveto

j ∈
(
ytag 1

j , ytag 2
j

)
. (3.12)

For 4-jet events it is possible to identify two veto jets. In this case, we order the veto jets

according to their transverse momentum with pveto 1
Tj > pveto 2

Tj . In the following we take

pT,veto = 20 GeV unless stated otherwise.

On the left-hand-side of figure 13 the rapidity distribution, dσ/dyrel, of the highest

pT veto jet is shown. Here the rapidity is measured with respect to the average rapidity

of the tagging jets,

yrel = yveto
j −

(
ytag 1

j + ytag 2
j

)
/2 . (3.13)

The two histograms correspond to the LO (dashed green) and NLO (solid red) distributions

at a scale µR = µF = 40 GeV. The suppression of jet activity in the center, near yrel = 0,

is even more pronounced at NLO than at LO, i.e. the higher order corrections strengthen

the rapidity gap features of VBF events. This is reflected by the K factor (solid line

in right-side panel of figure 13) which is greater than one for |yrel| > 2 and is less than

one in the central region between the tagging jets. The right-hand-side of the figure also

shows the scale variations for ξ = 2±1 relative to the ξ = 1 case: the scale dependence is

significantly reduced at NLO (dashed curves) and remains largest in the regions of small

cross section. In the vicinity of yrel = 0 the NLO result varies between −20% and +7%

down from a LO variation of −20% to +24%. In the large cross section regions, near

yrel ≈ ±2, the scale variations at NLO are a few percent only, a drastic improvement from

the LO situation. This small scale dependence in the large cross section region will be

reflected in small QCD uncertainties at NLO for jet veto probabilities.

The effect is clearly visible in figure 14 where the transverse momentum distribution

for the highest pT veto jet is shown for µR = µF = 40 GeV at LO (dashed green) and NLO

(solid red). The scale variations are largest at high pveto
Tj , but even at a value of 80 GeV the

NLO results for ξ = 2±1 (dashed curves) deviate from the ξ = 1 case by only −3% to +10%.
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Figure 13: The distribution in rapidity of the highest pT veto jet with the cuts of eqs. (3.1)–(3.7)

and eq. (3.12), measured with respect to the rapidity average of the tagging jets. In the left panel,

dσ/dyrel is shown at LO (dashed green) and NLO (solid red) for µF = µR = 40 GeV. In the

right-hand panel the K factor (solid green) and scale variations of LO (dotted) and NLO (dashed)

results are shown for µR = µF = ξµ0 with ξ = 1/2 and 2.

Figure 14: Same as figure 13 but for the distribution in the transverse momentum, pveto
Tj , of the

highest pT veto jet.

At LO (dotted) these scale variations are −22% to +31%. The K factor (solid green) is

close to one but decreases monotonically, i.e. at NLO the veto jet becomes slightly softer.

Figure 15 shows the effect of the veto cuts defined by eq. (3.12) on the tagging jet

invariant mass distribution. Both LO and NLO 3-jet ratios are reduced compared to

figure 12 due to the restricted rapidity range of eq. (3.12) for the veto jets. Figure 16

depicts the distribution in rapidity separation of the tagging jets with veto cuts. Again,

the 3-jet ratios are reduced. However, one also finds a significant shape change of the ∆yjj

dependence: the fairly steep decrease of the 3-jet ratio with increasing ∆yjj becomes much
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Figure 15: The invariant mass distribution of the two tagging jets for mh = 120 GeV within the

cuts of eqs. (3.1)–(3.5), eq. (3.6) and eq. (3.12). In the left panel, dσ/dmjj is shown at NLO (solid)

and LO (dashed) for Hjj and for Hjjj production at µR = µF = 40 GeV. In the right panel, the

corresponding 3-jet ratios, RLO(mjj) (dashed) and RNLO(mjj) (solid) are shown for the same scale

choice.

Figure 16: Same as figure 15 but for the rapidity separation of the two tagging jets and within

the cuts of eqs. (3.1)–(3.5), eq. (3.7), and eq. (3.12).

less pronounced at NLO.

In figure 17 we show the probability for finding a veto jet,

Pveto = P (pT,veto) =
1

σNLO
2

∫ ∞

pT,veto

dpveto
Tj

dσ3

dpveto
Tj

(3.14)

as a function of the minimum transverse momentum of the hardest veto jet, pT,veto. The

scale variations at LO for the absolute veto probability are on the order of up to ±3%. The

NLO corrections reduce this scale dependence to below the 1% level, i.e. to a negligible

uncertainty. When imposing a central jet veto, the accepted VBF Higgs production cross
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Figure 17: Ratio of the 3-jet cross section to the NLO 2-jet cross section for VBF, Pveto = σ3/σ
NLO
2 .

The dashed curves depict LO ratios and solid curves depict NLO ratios for the following scale choices:

µR = µF = 20 GeV (red), µR = µF = 40 GeV (green), and µR = µF = 80 GeV (blue).

section is given by

σ2(veto) = (1 − Pveto)σ2. (3.15)

Since, at NLO, Pveto is only about 10% for a veto jet pT threshold of 20 GeV (and lower for

harder thresholds) the perturbative uncertainty on the SM prediction for the Higgs cross

section due to a central jet veto is of order 1% only at NLO and hence negligible compared

to expected statistical errors [4].

4. Discussion and conclusions

In this paper we have presented the dominant QCD corrections for Higgs production via

vector-boson fusion in association with three jets. The calculations are implemented in the

form of a parton-level Monte Carlo program which allows to analyze arbitrary collinear

and infrared safe distributions with NLO QCD accuracy.

Our calculation involves several approximations which significantly reduce the com-

plexity of the virtual corrections. Since we are only interested in phase space regions where

vector boson fusion processes can be distinguished from QCD backgrounds, we neglect

contributions which are small once typical VBF cuts, in particular wide tagging jet sepa-

rations and large tagging jet invariant masses, are imposed. Identical fermion interference

effects are small after VBF cuts and we have also estimated the contribution from t-channel

gluon exchange in virtual diagrams (and related real emission diagrams) to be well below

one permille over the entire phase space relevant for VBF production. Neglecting these

small contributions, the QCD 1-loop corrections involve only a single quark line and are

similar in complexity to dijet production in DIS [33], i.e. they require the calculation of

box diagrams as the most complex ingredient.
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One reason for the smallness of the t-channel gluon contributions is that they are color

suppressed, by a factor of 1/(N2 −1) in an SU(N) gauge theory, and this feature is generic

since gluon colors need to be correlated to match the color singlet exchange nature of the

tree level VBF process. In addition, we find very strong kinematical suppression factors in

our analysis of the t-channel gluon contributions which can be traced to the characteristic

gluon radiation pattern in VBF events. It is this kinematical suppression which renders the

t-channel gluon contributions truly negligible. It would be interesting to find out, whether

this kinematical suppression persists at higher orders.

In our phenomenological analysis for the LHC we find that additional jet activity

between the tagging jets in VBF Higgs production events is even more strongly suppressed

once NLO QCD corrections are included: K factors go down to 0.7 for jet emission at

the center between the two tagging jets. This strengthens the case for a central jet veto

as a background suppression tool. Requiring the absence of any additional jet activity

of pTj > 20 GeV between the the tagging jets we find veto probabilities for the signal

of Pveto ≈ 10% from this perturbative QCD source. Our NLO QCD predictions for the

veto probability show small residual scale variations, indicating a relative error on Pveto

due to higher order effects of 10% or less. This implies that the survival probability

Psurv = 1 − Pveto can be determined with a perturbative QCD uncertainty of about 1%,

which is more than sufficient for Higgs coupling determinations at the LHC [4].

Beyond the additional jet activity from perturbative QCD radiation, which we have

analyzed in this paper, additional central jets in VBF events will arise from multiple parton

scattering (i.e. the underlying event) and from pile-up in high luminosity running. For

small veto thresholds pT,veto, the contributions from these sources may be as large as

the perturbative effects which we have considered and need to be estimated independently.

However, these additional contributions should be independent of the hard scattering event

and can, hence, be determined from other LHC data, in particular by measuring the jet

activity in other VBF processes. What will be needed on the theoretical side, is a precise

calculation of the perturbative contribution to the veto probability for these other VBF

processes, similar to the calculation described in this paper.
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A. Virtual corrections

In this appendix, we give the expressions for the finite, reduced amplitudes, M̃
(i)
τ that
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appear in eq. (2.23) in terms of B̃0, C̃0, and D̃ij functions. Here B̃0, C̃0, and D̃ij denote

the finite parts of the Passarino-Veltman B0, C0, and Dij functions [28], and are given

explicity below. We write

M̃(1)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c

(1)
q (/q1 − /q2) + c

(1)
1 /ǫ1 + c

(1)
2 /ǫ2

+c
(1)
b /ǫ2(/k2 + /q2)/ǫ1}Pτψ(k1) , (A.1)

M̃(2)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c

(2)
q (/q1 − /q2) + c

(2)
1 /ǫ1 + c

(2)
2 /ǫ2

+c
(2)
b /ǫ1(/k2 + /q1)/ǫ2}Pτψ(k1) , (A.2)

and,

M̃(3)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c

(3)
q (/q1 − /q2) + c

(3)
1 /ǫ1 + c

(3)
2 /ǫ2 (A.3)

+c
(3)
b (u)/ǫ1(/k2 + /q1)/ǫ2 + c

(3)
b (t)/ǫ2(/k2 + /q2)/ǫ1}Pτψ(k1) ,

where ǫ1 = ǫ1(q1) and ǫ2 = ǫ2(q2) are the effective polarization vectors for the gluon and

weak boson. The coefficient functions, c
(j)
i , with j = 1, 2, 3 and i = b, q, 1, 2 are given below.

c
(1)
b = Box

(1)
b −

2 B̃0(t)

t
−
Tb(q

2
2 , t)

t
(A.4)

c
(1)
1 = Box

(1)
1 + 2 ǫ2 ·k2Tǫ(q

2
2 , t) − 2 ǫ2 · q2

[B̃0(t) − B̃0(q
2
2)]

t− q22
(A.5)

c
(1)
2 = Box

(1)
2 + 2 ǫ1 · k1Tǫ(0, t) (A.6)

c(1)q = Box(1)
q (A.7)

c
(2)
b = Box

(2)
b −

2 B̃0(u)

u
−
Tb(q

2
2 , u)

u
(A.8)

c
(2)
1 = Box

(2)
1 + 2 ǫ2 · k1Tǫ(q

2
2 , u) + 2 ǫ2 · q2

[B̃0(u) − B̃0(q
2
2)]

u− q22
(A.9)

c
(2)
2 = Box

(2)
2 + 2 ǫ1 · k2Tǫ(0, u) (A.10)

c(2)q = Box(2)
q (A.11)

tc
(3)
b (t) = tBox

(3)
b − 2(tC̃0(t) + 1) + B̃0(t) + Tb(q

2
2 , t) (A.12)

uc
(3)
b (u) = uBox

(3)
b − 2(uC̃0(u) + 1) + B̃0(u) + Tb(q

2
2, u) (A.13)

c
(3)
1 = Box

(3)
1 − 2ǫ2 ·k2Tǫ(q

2
2, t) + 2ǫ2 · q2

[B̃0(t) − B̃0(q
2
2)]

t− q22
(A.14)

−2ǫ2 · k1Tǫ(q
2
2 , u) − 2ǫ2 · q2

[B̃0(u) − B̃0(q
2
2)]

u− q22

c
(3)
2 = Box

(3)
2 +

2

t
(tC̃0(t) + 1)ǫ1 · k1 +

2

u
(uC̃0(u) + 1)ǫ1 · k2 (A.15)

c(3)q = Box(3)
q (A.16)

The Ti functions are explicitly listed below.

Tb(q
2, t) =

1

t− q2
{2q2[B̃0(t) − B̃0(q

2)] + tB̃0(t)

−q2B̃0(q
2)} − 2q2C̃0(q

2, t) (A.17)
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Tǫ(q
2, t) =

1

t− q2
{
[B̃0(t) − B̃0(q

2)]
2t+ 3q2

t− q2
+ 2B̃0(q

2) + 1 − 2q2C̃0(q
2, t)

}
(A.18)

Tǫ(0, t) =
1

t
(2B̃0(t) + 1) (A.19)

Tb(0, t) = B̃0(t) (A.20)

Here the coefficients, Box
j
i , for j = 1, 2, 3 and i = b, q, 1, 2 are expressed in terms of the

Passarino-Veltman D̃ij functions. The Box coefficients with D̃ij = D̃ij(q1, k2, q2) are

listed below.

Box
(3)
b =

(
6D̃27 +

3

2
D̃0q

2
2 +

5

2
D̃12q

2
2 − D̃13q

2
2 − 3D̃23q

2
2 + D̃24q

2
2 − 2D̃25q

2
2

+4D̃26q
2
2 +

1

2
D̃0t+ 3D̃11t−

5

2
D̃12t+ D̃21t− D̃24t+ 4D̃25t

−4D̃26t−
3

2
D̃0u− D̃11u−

9

2
D̃12u+ 4D̃13u+ D̃21u

−5D̃24u+ 4D̃25u

)
/2 (A.21)

Box(3)
q = −D̃27ǫ1 · ǫ2 − 2D̃311ǫ1 · ǫ2 + 2D̃313ǫ1 · ǫ2 − 8D̃12ǫ1 · k2ǫ2 ·k2

+8D̃13ǫ1 · k2ǫ2 ·k2 − 4D̃22ǫ1 · k2ǫ2 ·k2 − 8D̃24ǫ1 · k2ǫ2 ·k2 + 12D̃26ǫ1 · k2ǫ2 ·k2

−4D̃36ǫ1 · k2ǫ2 ·k2 + 4D̃38ǫ1 · k2ǫ2 ·k2 +
3

2
D̃0ǫ1 · q2ǫ2 ·k2 +

3

2
D̃12ǫ1 · q2ǫ2 ·k2

+4D̃23ǫ1 · q2ǫ2 ·k2 − 8D̃25ǫ1 · q2ǫ2 ·k2 + 4D̃26ǫ1 · q2ǫ1 · k2 − 4D̃310ǫ1 · q2ǫ2 ·k2

+4D̃39ǫ1 · q2ǫ2 ·k2 −
3

2
D̃0ǫ1 · k2ǫ2 · q1 −

19

2
D̃12ǫ1 · k2ǫ2 · q1 + 8D̃13ǫ1 · k2ǫ2 · q1

−12D̃24ǫ1 · k2ǫ2 · q1 + 8D̃25ǫ1 · k2ǫ2 · q1 + 4D̃26ǫ1 · k2ǫ2 · q1 + 4D̃310ǫ1 · k2ǫ2 · q1

−4D̃34ǫ1 · k2ǫ2 · q1 + 4D̃23ǫ1 · q2ǫ2 · q1 − 4D̃25ǫ1 · q2ǫ2 · q1 − 4D̃35ǫ1 · q2ǫ2 · q1

+4D̃37ǫ1 · q2ǫ2 · q1 −
3

2
D̃0ǫ1 · k2ǫ2 · q2 −

11

2
D̃12ǫ1 · k2ǫ2 · q2 + 4D̃13ǫ1 · k2ǫ2 · q2

+8D̃23ǫ1 · k2ǫ2 · q2 − 4D̃24ǫ1 · k2ǫ2 · q2 − 4D̃26ǫ1 · k2ǫ2 · q2 − 4D̃310ǫ1 · k2ǫ2 · q2

+4D̃39ǫ1 · k2ǫ2 · q2 + 4D̃23ǫ1 · q2ǫ2 · q2 − 4D̃25ǫ1 · q2ǫ2 · q2 + 4D̃33ǫ1 · q2ǫ2 · q2

−4D̃37ǫ1 · q2ǫ2 · q2 −
1

2
D̃12ǫ1 · ǫ2q

2
2 +

1

2
D̃13ǫ1 · ǫ2q

2
2 +

1

2
D̃23ǫ1 · ǫ2q

2
2)

−
1

2
D̃24ǫ1 · ǫ2q

2
2 − D̃310ǫ1 · ǫ2q

2
2 − D̃33ǫ1 · ǫ2q

2
2 + D̃37ǫ1 · ǫ2q

2
2

+D̃39ǫ1 · ǫ2q
2
2 − D̃0ǫ1 · ǫ2t−

3

2
D̃11ǫ1 · ǫ2t+

1

2
D̃12ǫ1 · ǫ2t

−
1

2
D̃21ǫ1 · ǫ2t+

1

2
D̃24ǫ1 · ǫ2t+ D̃310ǫ1 · ǫ2t− D̃35ǫ1 · ǫ2t

+D̃37ǫ1 · ǫ2t− D̃39ǫ1 · ǫ2t−
11

2
D̃11ǫ1 · ǫ2u+

3

2
D̃12ǫ1 · ǫ2u

−D̃13ǫ1 · ǫ2u+
1

2
D̃21ǫ1 · ǫ2u+ D̃23ǫ1 · ǫ2u+

3

2
D̃24ǫ1 · ǫ2u

−2D̃25ǫ1 · ǫ2u− D̃26ǫ1 · ǫ2u− D̃310ǫ1 · ǫ2u+ D̃34ǫ1 · ǫ2u

−D̃35ǫ1 · ǫ2u+ D̃37ǫ1 · ǫ2u (A.22)

Box
(3)
1 = 24D̃27ǫ2 ·k2 + 20D̃312ǫ2 ·k2 + 22D̃27ǫ2 · q1 + 20D̃311ǫ2 · q1
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+12D̃27ǫ2 · q2 + 20D̃313ǫ2 · q2 − 4D̃23ǫ2 ·k2q
2
2 + 4D̃26ǫ2 ·k2q

2
2

+2D̃38ǫ2 ·k2q
2
2 − 2D̃39ǫ2 ·k2q

2
2 + D̃12ǫ2 · q1q

2
2 − D̃13ǫ2 · q1q

2
2

−3D̃23ǫ2 · q1q
2
2 + D̃24ǫ2 · q1q

2
2 + 2D̃26ǫ2 · q1q

2
2 + 2D̃310ǫ2 · q1q

2
2

−2D̃37ǫ2 · q1q
2
2 − 2D̃23ǫ2 · q2q

2
2 + 2D̃26ǫ2 · q2q

2
2 − 2D̃33ǫ2 · q2q

2
2

+2D̃39ǫ2 · q2q
2
2 +

3

2
D̃0ǫ2 ·k2t+

3

2
D̃12ǫ2 ·k2t+ 4D̃13ǫ2 ·k2t

+2D̃25ǫ2 ·k2t+ 2D̃26ǫ2 ·k2t+ 2D̃310ǫ2 ·k2t− 2D̃38ǫ2 ·k2t

+2D̃0ǫ2 · q1t+ 3D̃11ǫ2 · q1t− D̃12ǫ2 · q1t+ 4D̃13ǫ2 · q1t

+D̃21ǫ2 · q1t− D̃24ǫ2 · q1t+ 6D̃25ǫ2 · q1t− 2D̃26ǫ2 · q1t

−2D̃310ǫ2 · q1t+ 2D̃35ǫ2 · q1t+ 4D̃13ǫ2 · q2t+ 4D̃23ǫ2 · q2t

+2D̃25ǫ2 · q2t− 2D̃26ǫ2 · q2t+ 2D̃37ǫ2 · q2t− 2D̃39ǫ2 · q2t

+
3

2
D̃0ǫ2 ·k2u+

7

2
D̃12ǫ2 ·k2u− 2D̃13ǫ2 ·k2u+ 2D̃22ǫ2 ·k2u

−2D̃24ǫ2 ·k2u+ 2D̃25ǫ2 ·k2u− 2D̃26ǫ2 ·k2u+ 2D̃310ǫ2 ·k2u

−2D̃36ǫ2 ·k2u+
3

2
D̃0ǫ2 · q1u+ D̃11ǫ2 · q1u+

5

2
D̃12ǫ2 · q1u

−2D̃13ǫ2 · q1u− D̃21ǫ2 · q1u+ D̃24ǫ2 · q1u− 2D̃34ǫ2 · q1u

+2D̃35ǫ2 · q1u+
3

2
D̃0ǫ2 · q2u+

3

2
D̃12ǫ2 · q2u− 2D̃23ǫ2 · q2u

+2D̃26ǫ2 · q2u− 2D̃310ǫ2 · q2u+ 2D̃37ǫ2 · q2u (A.23)

Box
(3)
2 = −12D̃27ǫ1 · k2 − 4D̃312ǫ1 · k2 − 6D̃27ǫ1 · q2 − 4D̃313ǫ1 · q2

−3D̃0ǫ1 · k2q
2
2 − 7D̃12ǫ1 · k2q

2
2 + 2D̃13ǫ1 · k2q

2
2 − 2D̃22ǫ1 · k2q

2
2

+6D̃23ǫ1 · k2q
2
2 − 2D̃24ǫ1 · k2q

2
2 + 4D̃25ǫ1 · k2q

2
2 − 8D̃26ǫ1 · k2q

2
2

−2D̃38ǫ1 · k2q
2
2 + 2D̃39ǫ1 · k2q

2
2 −

3

2
D̃0ǫ1 · q2q

2
2 −

5

2
D̃12ǫ1 · q2q

2
2

−D̃13ǫ1 · q2q
2
2 + 3D̃23ǫ1 · q2q

2
2 − D̃24ǫ1 · q2q

2
2 + 2D̃25ǫ1 · q2q

2
2

−6D̃26ǫ1 · q2q
2
2 + 2D̃33ǫ1 · q2q

2
2 − 2D̃39ǫ1 · q2q

2
2 +

3

2
D̃0ǫ1 · k2t

−4D̃11ǫ1 · k2t+
11

2
D̃12ǫ1 · k2t− 2D̃21ǫ1 · k2t+ 2D̃22ǫ1 · k2t

−6D̃25ǫ1 · k2t+ 6D̃26ǫ1 · k2t− 2D̃310ǫ1 · k2t+ 2D̃38ǫ1 · k2t

−
1

2
D̃0ǫ1 · q2t− 3D̃11ǫ1 · q2t+

5

2
D̃12ǫ1 · q2t− D̃21ǫ1 · q2t

+D̃24ǫ1 · q2t− 6D̃25ǫ1 · q2t+ 6D̃26ǫ1 · q2t− 2D̃37ǫ1 · q2t

+2D̃39ǫ1 · q2t+
7

2
D̃0ǫ1 · k2u+

23

2
D̃12ǫ1 · k2u− 6D̃13ǫ1 · k2u

−2D̃21ǫ1 · k2u+ 2D̃22ǫ1 · k2u+ 10D̃24ǫ1 · k2u− 6D̃25ǫ1 · k2u

−2D̃26ǫ1 · k2u− 2D̃310ǫ1 · k2u+ 2D̃36ǫ1 · k2u+ 2D̃0ǫ1 · q2u

−D̃11ǫ1 · q2u+ 5D̃12ǫ1 · q2u− D̃21ǫ1 · q2u− 2D̃23ǫ1 · q2u

+3D̃24ǫ1 · q2u+ 2D̃26ǫ1 · q2u+ 2D̃310ǫ1 · q2u− 2D̃37ǫ1 · q2u (A.24)
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The Box coefficients with D̃ij = D̃ij(k2, q2, q1) are listed below.

Box
(1)
1 = −ǫ1 · q1[−8D̃27 − 8D̃312 − (D̃11 − D̃12 + D̃13 − 4D̃22 + 4D̃24)q

2
2 + D̃11s− D̃12s

+D̃13s− 4D̃22s+ 4D̃24s+ D̃11t− D̃12t+ D̃13t− 4D̃22t+ 4D̃24t]

+ǫ2 · q1[8D̃27+8D̃313+(D̃11−D̃12+D̃13−4D̃22+4D̃24)q
2
2−D̃11t−3D̃12t

+3D̃13t−4D̃24t+4D̃26t]−ǫ2 ·k2[16D̃311−24D̃312−(D̃11−D̃12+D̃13+4D̃25

−4D̃26−8D̃310−4D̃32−4D̃34+4D̃35+8D̃36+4D̃38)q
2
2+5D̃11s−5D̃12s

+D̃13s+4D̃21s−4D̃24s+4D̃25s−4D̃26s−8D̃310s+4D̃35s+4D̃38s−4D̃12t

+4D̃13t+4D̃22t−8D̃24t+8D̃25t−4D̃26t−4D̃310t−4D̃34t

+4D̃35t+ 4D̃36t] (A.25)

Box
(1)
2 = ǫ1 · k2[8D̃311 − 24D̃313 − (D̃11 + 3D̃12 − 3D̃13 − 4D̃22 + 8D̃24 − 4D̃25 + 4D̃310

−4D̃37−4D̃38+4D̃39)q
2
2−D̃11s+D̃12s−5D̃13s−8D̃25s+4D̃26s−4D̃37s

+4D̃39s+4D̃12t−4D̃13t−4D̃23t+4D̃24t−4D̃25t+4D̃26t+4D̃310t−4D̃37t]

−ǫ1 · q2[8D̃27−8D̃312+24D̃313+(D̃11+3D̃12−3D̃13−4D̃22+8D̃24−4D̃25

+4D̃310−4D̃37−4D̃38+4D̃39)q
2
2+D̃11s−D̃12s+5D̃13s+8D̃25s−4D̃26s

+4D̃37s−4D̃39s−D̃11t−7D̃12t+7D̃13t+4D̃23t−8D̃24t+4D̃25t−4D̃310t

+4D̃37t] (A.26)

Box(1)
q = 8D̃312ǫ1 · ǫ2 − 8D̃313ǫ1 · ǫ2 + 8D̃12ǫ1 · k2ǫ2 ·k2 − 8D̃13ǫ1 · k2ǫ2 ·k2

+12D̃24ǫ1 · k2ǫ2 ·k2 − 12D̃25ǫ1 · k2ǫ2 ·k2 + 4D̃34ǫ1 · k2ǫ2 ·k2 − 4D̃35ǫ1 · k2ǫ2 ·k2

+D̃11ǫ1 · q2ǫ2 ·k2 + 7D̃12ǫ1 · q2ǫ2 ·k2 − 7D̃13ǫ1 · q2ǫ2 ·k2 + 4D̃22ǫ1 · q2ǫ2 ·k2

+8D̃24ǫ1 · q2ǫ2 ·k2 − 4D̃25ǫ1 · q2ǫ2 ·k2 − 8D̃26ǫ1 · q2ǫ2 ·k2 − 4D̃310ǫ1 · q2ǫ2 ·k2

+4D̃36ǫ1 · q2ǫ2 ·k2 − D̃11ǫ1 · k2ǫ2 · q1 + D̃12ǫ1 · k2ǫ2 · q1 − D̃13ǫ1 · k2ǫ2 · q1

−4D̃23ǫ1 · k2ǫ2 · q1 − 4D̃25ǫ1 · k2ǫ2 · q1 + 8D̃26ǫ1 · k2ǫ2 · q1 + 4D̃310ǫ1 · k2ǫ2 · q1

−4D̃37ǫ1 · k2ǫ2 · q1 − 4D̃23ǫ1 · q2ǫ2 · q1 + 4D̃26ǫ1 · q2ǫ2 · q1 + 4D̃38ǫ1 · q2ǫ2 · q1

−4D̃39ǫ1 · q2ǫ2 · q1 − D̃11ǫ1 · k2ǫ1 · q1 + 5D̃12ǫ1 · k2ǫ1 · q1 − 5D̃13ǫ1 · k2ǫ1 · q1

+8D̃22ǫ1 · k2ǫ1 · q1 − 4D̃25ǫ1 · k2ǫ1 · q1 − 4D̃26ǫ1 · k2ǫ1 · q1 − 4D̃310ǫ1 · k2ǫ1 · q1

+4D̃36ǫ1 · k2ǫ1 · q1 + 4D̃12ǫ1 · q2ǫ1 · q1 − 4D̃13ǫ1 · q2ǫ1 · q1 + 8D̃22ǫ1 · q2ǫ1 · q1

−8D̃26ǫ1 · q2ǫ1 · q1 + 4D̃32ǫ1 · q2ǫ1 · q1 − 4D̃38ǫ1 · q2ǫ1 · q1 − 4D̃310ǫ1 · ǫ2q
2
2

−2D̃32ǫ1 · ǫ2q
2
2 + 2D̃36ǫ1 · ǫ2q

2
2 + 2D̃37ǫ1 · ǫ2q

2
2 + 4D̃38ǫ1 · ǫ2q

2
2

−2D̃39ǫ1 · ǫ2q
2
2 −

1

2
D̃11ǫ1 · ǫ2s+

1

2
D̃12ǫ1 · ǫ2s−

1

2
D̃13ǫ1 · ǫ2s

−2D̃25ǫ1 · ǫ2s+ 2D̃26ǫ1 · ǫ2s+ 2D̃310ǫ1 · ǫ2s− 2D̃37ǫ1 · ǫ2s

−2D̃38ǫ1 · ǫ2s+ 2D̃39ǫ1 · ǫ2s− 2D̃22ǫ1 · ǫ2t− 2D̃23ǫ1 · ǫ2t

+4D̃26ǫ1 · ǫ2t+ 4D̃310ǫ1 · ǫ2t− 2D̃36ǫ1 · ǫ2t− 2D̃37ǫ1 · ǫ2t (A.27)

Box
(1)
b = −4D̃27−12D̃312+12D̃313+4D̃310q

2
2+2D̃32q

2
2−2D̃36q

2
2−2D̃37q

2
2−4D̃38q

2
2+2D̃39q

2
2

−2D̃0s− D̃11s− D̃12s+ D̃13s+ 2D̃25s− 2D̃26s− 2D̃310s+ 2D̃37s+ 2D̃38s

−2D̃39s+ 2D̃22t+ 2D̃23t− 4D̃26t− 4D̃310t+ 2D̃36t+ 2D̃37t (A.28)
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The Box coefficients with D̃ij = D̃ij(k2, q1, q2) are listed below.

Box
(2)
1 = −ǫ2 · q1[8D̃27 − 8D̃312 + 24D̃313 − 4(D̃23 − D̃26 + D̃33 − D̃39)q

2
2 + D̃11s− D̃12s

+5D̃13s+8D̃25s−4D̃26s+4D̃37s−4D̃39s−D̃11u−7D̃12u+7D̃13u+4D̃23u

−8D̃24u+4D̃25u−4D̃310u+4D̃37u]−ǫ2 · q2[8D̃27+16D̃313−4(D̃23−D̃26+D̃33

−D̃39)q
2
2+4D̃13s+4D̃23s+4D̃25s−4D̃26s+4D̃37s−4D̃39s−D̃11u−3D̃12u

+3D̃13u+8D̃23u−4D̃24u−4D̃26u−4D̃310u+4D̃37u]−ǫ2 ·k2[−8D̃311+24D̃313

−(D̃11−D̃12+D̃13+4D̃25−4D̃26+4D̃33−4D̃39)q
2
2+D̃11s−D̃12s+5D̃13s

+8D̃25s−4D̃26s+4D̃37s−4D̃39s−4D̃12u+4D̃13u+4D̃23u−4D̃24u+4D̃25u

−4D̃26u−4D̃310u+4D̃37u] (A.29)

Box
(2)
2 = −ǫ1 · q2[−8D̃27 − 8D̃313 + (D̃11 + 3D̃12 − 3D̃13 + 4D̃24 − 4D̃26)u]

−ǫ1 · k2[16D̃311 − 24D̃312 + (D̃11 + 3D̃12 − 3D̃13 − 4D̃23 + 4D̃24 + 4D̃310

−4D̃37−4D̃38+4D̃39)q
2
2+5D̃11s−5D̃12s+D̃13s+4D̃21s−4D̃24s+4D̃25s

−4D̃26s−8D̃310s+4D̃35s+4D̃38s−4D̃12u+4D̃13u+4D̃22u−8D̃24u+8D̃25u

−4D̃26u−4D̃310u−4D̃34u+4D̃35u+4D̃36u] (A.30)

Box
(2)
b = −4D̃27 − 12D̃312 + 12D̃313 − 2D̃33q

2
2 − 2D̃38q

2
2 + 4D̃39q

2
2 − 2D̃0s− D̃11s− D̃12s

+D̃13s+ 2D̃25s− 2D̃26s− 2D̃310s+ 2D̃37s+ 2D̃38s− 2D̃39s+ 2D̃22u+ 2D̃23u

−4D̃26u− 4D̃310u+ 2D̃36u+ 2D̃37u (A.31)

Box(2)
q = −8D̃312ǫ1 · ǫ2 + 8D̃313ǫ1 · ǫ2 − 8D̃12ǫ1 · k2ǫ2 ·k2 + 8D̃13ǫ1 · k2ǫ2 ·k2

−12D̃24ǫ1 · k2ǫ2 ·k2 + 12D̃25ǫ1 · k2ǫ2 ·k2 − 4D̃34ǫ1 · k2ǫ2 ·k2 + 4D̃35ǫ1 · k2ǫ2 ·k2

+D̃11ǫ1 · q2ǫ2 ·k2 − D̃12ǫ1 · q2ǫ2 ·k2 + D̃13ǫ1 · q2ǫ2 ·k2 + 4D̃23ǫ1 · q2ǫ2 ·k2

+4D̃25ǫ1 · q2ǫ2 ·k2 − 8D̃26ǫ1 · q2ǫ2 ·k2 − 4D̃310ǫ1 · q2ǫ2 ·k2 + 4D̃37ǫ1 · q2ǫ2 ·k2

−D̃11ǫ1 · k2ǫ2 · q1 − 7D̃12ǫ1 · k2ǫ2 · q1 + 7D̃13ǫ1 · k2ǫ2 · q1 − 4D̃22ǫ1 · k2ǫ2 · q1

−8D̃24ǫ1 · k2ǫ2 · q1 + 4D̃25ǫ1 · k2ǫ2 · q1 + 8D̃26ǫ1 · k2ǫ2 · q1 + 4D̃310ǫ1 · k2ǫ2 · q1

−4D̃36ǫ1 · k2ǫ2 · q1 + 4D̃23ǫ1 · q2ǫ2 · q1 − 4D̃26ǫ1 · q2ǫ2 · q1 − 4D̃38ǫ1 · q2ǫ2 · q1

+4D̃39ǫ1 · q2ǫ2 · q1 − D̃11ǫ1 · k2ǫ2 · q2 − 3D̃12ǫ1 · k2ǫ2 · q2 + 3D̃13ǫ1 · k2ǫ2 · q2

+8D̃23ǫ1 · k2ǫ2 · q2 − 4D̃24ǫ1 · k2ǫ2 · q2 − 4D̃26ǫ1 · k2ǫ2 · q2 − 4D̃310ǫ1 · k2ǫ2 · q2

+4D̃37ǫ1 · k2ǫ2 · q2 + 4D̃23ǫ1 · q2ǫ2 · q2 − 4D̃26ǫ1 · q2ǫ2 · q2 + 4D̃33ǫ1 · q2ǫ2 · q2

−4D̃39ǫ1 · q2ǫ2 · q2 − 2D̃33ǫ1 · ǫ2q
2
2 − 2D̃38ǫ1 · ǫ2q

2
2 + 4D̃39ǫ1 · ǫ2q

2
2

+
1

2
D̃11ǫ1 · ǫ2s−

1

2
D̃12ǫ1 · ǫ2s+

1

2
D̃13ǫ1 · ǫ2s+ 2D̃25ǫ1 · ǫ2s

−2D̃26ǫ1 · ǫ2s− 2D̃310ǫ1 · ǫ2s+ 2D̃37ǫ1 · ǫ2s+ 2D̃38ǫ1 · ǫ2s

−2D̃39ǫ1 · ǫ2s+ 2D̃22ǫ1 · ǫ2u+ 2D̃23ǫ1 · ǫ2u− 4D̃26ǫ1 · ǫ2u

−4D̃310ǫ1 · ǫ2u+ 2D̃36ǫ1 · ǫ2u+ 2D̃37ǫ1 · ǫ2u (A.32)

In the above expressions, the finite D̃ij functions are obtained by standard Passarino-

Veltman recursion relations [28] from the finite parts of the basic scalar integrals. For

the virtual corrections considered, only the one-mass box [34, 35], is needed. Specifi-
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cally, we need the case in which k2
1 = k2

2 = q21 = 0 and q22 6= 0. Here ki and qi with

i = 1, 2 are the external four momenta. The one-mass box in the unphysical region,

−s > 0,−t > 0,−q22 > 0 is,

D0(k2, q2, q1) =

∫
ddk

iπ2

1

[k2][(k − k2)2][(k − k2 − q2)2][(k − k2 − q2 − q1)2]
(A.33)

= π−ǫ(µ2)−ǫΓ(1 + ǫ)

·

{
2

st

1

ǫ2
+

2

st

1

ǫ

[
ln

(
−q22
µ2

)
−ln

(
−s

µ2

)
−ln

(
−t

µ2

)]
+D̃0(k2, q2, q1)+O(ǫ)

}
,

where,

D̃0(k2, q2, q1) =
1

st

[
ln2

(
−s

µ2

)
+ ln2

(
−t

µ2

)
− ln2

(
−q22
µ2

)
(A.34)

− ln

(
−s

µ2

)
+ ln

(
−t

µ2

)
− 2 Li2

(
1 −

q22
t

)
− 2 Li2

(
1 −

q22
s

)
−

2π2

3

]
.

The Mandelstam variables, s and t, are defined in eq. (2.22).

For the present application, the invariant, q22 is always space-like while the Mandelstam

invariants, s and t, may either be time-like or space-like. Results for physical kinematic

regions can be obtained by analytic continuation by replacing the time-like invariant by

t → t+ i0+ or s→ s+ i0+.

In addition, to the one-mass box, we also require expressions for the 3-point and 2-point

scalar integrals in d = 4 − 2ǫ space-time dimensions. For the 3-point scalar integral,

C0(p
2
1, p

2
2, (p1 + p2)

2) =

∫
ddk

iπ2

1

[−k2 − i0+][−(k + p1)2 − i0+]

×
1

[−(k + p1 + p2)2 − i0+]
, (A.35)

two cases are needed. Here p1 and p2 represent the external outward flowing four momenta.

(a) For the two-mass triangle, either, p2
1 = 0 or p2

2 = 0 and p2
3 = (p1 + p2)

2 6= 0.

C0(p
2
1, 0, p

2
3) = π−ǫ(µ2)−ǫΓ(1 + ǫ) (A.36)

·

{
1

−p2
3 − p2

1

(
ln

(
−p2

3 − i0+

µ2

)
− ln

(
−p2

1 − i0+

µ2

))
1

ǫ

+ C̃0(p
2
1, p

2
3) + O(ǫ)

}

C̃0(p
2
1, p

2
3) =

1

2

1

−p2
3 − p2

1

(
ln2

(
−p2

1 − i0+

µ2

)
− ln2

(
−p2

3 − i0+

µ2

))
(A.37)

(b) For the one-mass triangle, p2
1 = p2

2 = 0 and p2
3 = (p1 + p2)

2 6= 0.

C0(0, 0, p
2
3) = π−ǫ(µ2)−ǫΓ(1 + ǫ)

{
1

−p2
3

1

ǫ2
(A.38)

−
1

−p2
3

ln

(
−p2

3 − i0+

µ2

)
1

ǫ
+ C̃0(p

2
3) + O(ǫ)

}
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C̃0(p
2
3) = −

π2

6

1

−p2
3

+
1

−p2
3

1

2
ln2

(
−p2

3 − i0+

µ2

)
(A.39)

The scalar 2-point integral is

B0(q
2) =

∫
ddk

iπ2

1

[−k2 − i0+][−(k − q)2 − i0+]
(A.40)

= π−ǫ(µ2)−ǫΓ(1 + ǫ)

[
1

ǫ
+ B̃0(q

2) + O(ǫ)

]

with

B̃0(q
2) = 2 − ln

−q2 − i0+

µ2
. (A.41)

B. Cross section formulas

In this appendix we give cross section formulas for processes of the type,

g(pa) +Q(pb) → q(p1) + q̄(p3) +Q(p2) +H(P ). (B.1)

Results for the crossed process q(pa) + Q(pb) → q(p1) + Q(p2) + g(p3) + H(P ) were al-

ready given in section 2. The finite three parton NLO cross section that results from the

cancellation of the 1/ǫ2 and 1/ǫ poles of the virtual corrections with those of the insertion

operator, I(ǫ), is

σNLO
3 (gQ→ qq̄QH) =

∫ 1

0
dxa

∫ 1

0
dxbfg/p(xa, µF )fQ/p(xb, µF ) (B.2)

×
1

2ŝ
dΦ4(pa, pb)F

(3)
J (p1, p2, p3, P ; pa, pb)

·
∑

colors

{
|M3(1q, 2Q, 3q̄, ag, bQ)|2

(
1+

αs(µ
2)

2π
(Kborn+F (s13, sa3, sa1))

)

+ 2 Re[M̃virt
3 (1q, 2Q, 3q̄, ag, bQ)M∗

3(1q, 2Q, 3q̄, ag, bQ)]
}
,

with

M̃virt
3 (1q, 2Q, 3q̄, ag, bQ) = tcaδi1i3M̃V (p1,−pa, pa13; ǫa, h(pbτb, p2τ2)) . (B.3)

The Born level matrix element squared is

∑

colors

|M3(1q, 2Q, 3q̄, ag, bQ)|2 =
CFN

N2 − 1
|A3(1q, ag, 3q̄; 2Q, bQ)|2 (B.4)

with

A3(1q, ag, 3q̄; 2Q, bQ) = MB(p1,−pa, pa13; ǫa, h(pbτb, p2τ2)) . (B.5)

The finite collinear contribution is

σNLO
3,col (gQ→ qq̄QH) =

∫ 1

0
dxa

∫ 1

0
dxb

1

2ŝ
dΦ4(pa, pb)F

(3)
J (p1, p2, p3; pa, pb) (B.6)
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·
{
fg/p(xa;µF )f2,b

Q/p(xb;µF , µR)

+
1

2

(
f1,a

g/p(xa;µF , µR) + f3,a
g/p(xa;µF , µR)

)
fQ/p(xb;µF )

}

·
CFN

N2 − 1
|A3(1q, ag, 3q̄; 2Q, bQ)|2

with

f i,a
g/p(xa;µF , µR) =

αs(µR)

2π

∫ 1

xa

dz

z

{
∑

q

[
fq/p

(xa

z
;µF

)
+ fq̄/p

(xa

z
;µF

)]
Ai,a

qg (z)

+
[
fg/p

(xa

z
;µF

)
− zfg/p(xa;µF )

]
Bi,a

gg (z) (B.7)

+ fg/p

(xa

z
;µF

)
Ci,a

gg (z)
}

+
αs(µR)

2π
fg/p(xa;µF )Di,a

gg (xa),

with kernels,

Ai,a
qg (z) = CF

[
1 + (1 − z)2

z
ln

2papi(1 − z)

µ2
F z

+ z

]
(B.8)

Bi,a
gg (z) = CA

[
2

1 − z
ln

2papi(1 − z)

µ2
F

−
3

2

1

1 − z

]
, (B.9)

Ci,a
gg (z) = 2CA

[(
1 − z

z
− 1 + z(1 − z)

)
ln

2papi(1 − z)

µ2
F z

−
1

1 − z
ln z

]
, (B.10)

Di,a
gg (x) = 2CA ln(1 − x) ln

2papi

µ2
F

+ γg ln
2papi

µ2
F

+CA

(
2π2

3
−

50

9
+ ln2(1 − x)

)
(B.11)

+
16

9
TRNf −

3

2
CA −

3

2
CA ln(1 − x) .
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